Publication: Vitamin D and Forearm Fractures in Children Preliminary Findings: Risk Factors and Correlation between Low-Energy and High-Energy Fractures
Loading...
Date
2022
Authors
Ducic, Sinisa (22950480700)
Milanovic, Filip (57220590207)
Lazovic, Mikan (57208187125)
Bukva, Bojan (55516005300)
Djuricic, Goran (59157834100)
Radlovic, Vladimir (25121643300)
Nikolic, Dejan (26023650800)
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Background: The forearm is the most common fracture site in childhood, accounting for every fourth pediatric fracture. It is well described that vitamin D is involved in the regulation of bone mineralization and skeletal homeostasis by the regulation of calcium absorption. The aim of our study was to determine the influence of 25-hydroxyvitamin D levels on forearm fracture falls in a pediatric population, depending on level of energy impact. Additionally, we also aimed to evaluate the correlation between 25-hydroxyvitamin D levels and other tested risk factors for pediatric fractures. Methods: We evaluated 50 eligible children aged 3 to 12 years with a forearm fracture. According to energy impact, patients were grouped into low-energy fractures (LEF) and high-energy fractures (HEF) groups. The general characteristics of the patients included age, gender, sport participation, and fractured bone and its localization. We analyzed 25-hydroxyvitamin D, parathyroid hormone (PTH), calcium, magnesium, phosphate, C-reactive protein (CRP) levels, and body mass index (BMI). Results: There is a significant difference in the 25-hydroxyvitamin D levels distribution between LEF and HEF (p < 0.001) and PTH levels (p = 0.002). For magnesium levels, calcium levels, phosphate levels, and CRP levels, there were no significant differences in their frequency distribution. For the group of patients with LEF, there is a significantly positive correlation between 25-hydroxyvitamin D and calcium levels (p = 0.019) and a borderline significantly positive correlation between 25hydroxyvitamin D and magnesium levels (p = 0.050). For the group of patients with HEF, there was only a significantly positive correlation between 25-hydroxyvitamin D and PTH levels (p < 0.001). Conclusions: Children with LEF were more frequently insufficient in 25-hydroxyvitamin D levels but had normal calcium levels, compared to the ones with HEF. These findings suggest that LEF and HEF in children might to a certain degree have different pathophysiological mechanisms. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Description
Keywords
25-hydroxyvitamin D, bone metabolism, children, forearm, fractures
