Repository logo
  • English
  • Srpski (lat)
  • Српски
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Djukic, Danica (57604470200)"

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Characterization of Bone Matrix Mineralization and Osteocyte Lacunar Density Unveils Microstructural Impairment at the Main Femoral Fracture-Initiating Site in Type 2 Diabetes Mellitus
    (2025)
    Cirovic, Aleksandar (57191923523)
    ;
    Jadzic, Jelena (57217214308)
    ;
    Plumeyer, Christine (57202758261)
    ;
    Djukic, Danica (57604470200)
    ;
    Zivkovic, Vladimir (36783131300)
    ;
    Nikolic, Slobodan (7102082739)
    ;
    Djonic, Danijela (6504271198)
    ;
    Djuric, Marija (12243542300)
    ;
    Busse, Björn (26533959100)
    ;
    Milovanovic, Petar (25927301300)
    This study aimed to perform microstructural characterization of the increased fragility of human bone in type 2 diabetes mellitus (T2DM) by exploring the matrix mineralization and osteocyte lacunar density at the superolateral femoral neck—the typical fracture-initiating site. Postmortem specimens of the full-length superolateral femoral neck from 16 elderly men with T2DM and age-matched non-DM controls were examined using backscattered-electron microscopy in terms of mineralization parameters and parameters of osteocyte lacunar density. The T2DM and control groups did not differ in age and body mass index (p > 0.05). In the endocortical region, T2DM was associated with a lower degree of mineralization (lower CaMean: p = 0.04), a higher proportion of extremely low-mineralized areas (higher CaLow: p = 0.027), and greater mineralization heterogeneity (higher CaWidth: p = 0.003) relative to controls. However, there were no significant intergroup differences in mineralization parameters in the periosteal region. In the endocortical region, T2DM showed lower unmineralized (p = 0.006) and total osteocyte lacunar number (Lc.N) per bone area (B.Ar) (p = 0.018) coupled with a higher percentage of mineralized lacunae (%Mn.Lc) relative to controls (p = 0.05). In the periosteal region, only Lc.N/B.Ar was lower in T2DM (p = 0.004). As for the trabecular compartment, T2DM was associated with lower trabecular CaMean (p = 0.048) and higher trabecular CaLow and CaWidth (p = 0.005, p = 0.007). Altered pattern of mineralization in the cortical (especially in the endocortical region) and trabecular compartments of the superolateral femoral neck and reduced cortical osteocyte lacunar density are structural hallmarks of bone fragility in T2DM. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Increased Cortical Porosity, Reduced Cortical Thickness, and Reduced Trabecular and Cortical Microhardness of the Superolateral Femoral Neck Confer the Increased Hip Fracture Risk in Individuals with Type 2 Diabetes
    (2022)
    Cirovic, Aleksandar (57191923523)
    ;
    Jadzic, Jelena (57217214308)
    ;
    Djukic, Danica (57604470200)
    ;
    Djonic, Danijela (6504271198)
    ;
    Zivkovic, Vladimir (36783131300)
    ;
    Nikolic, Slobodan (7102082739)
    ;
    Djuric, Marija (12243542300)
    ;
    Milovanovic, Petar (25927301300)
    Individuals with diabetes mellitus type 2 (T2DM) have approximately 30% increased risk of hip fracture; however, the main cause of the elevated fracture risk in those subjects remains unclear. Moreover, micromechanical and microarchitectural properties of the superolateral femoral neck—the common fracture-initiating site—are still unknown. We collected proximal femora of 16 men (eight with T2DM and eight controls; age: 61 ± 10 years) at autopsy. After performing post-mortem bone densitometry (DXA), the superolateral neck was excised and scanned with microcomputed tomography (microCT). We also conducted Vickers microindentation testing. T2DM and control subjects did not differ in age (p = 0.605), body mass index (p = 0.114), and femoral neck bone mineral density (BMD) (p = 0.841). Cortical porosity (Ct.Po) was higher and cortical thickness (Ct.Th) was lower in T2DM (p = 0.044, p = 0.007, respectively). Of trabecular microarchitectural parameters, only structure model index (p = 0.022) was significantly different between T2DM subjects and controls. Control group showed higher cortical (p = 0.002) and trabecular bone microhardness (p = 0.005). Increased Ct.Po and decreased Ct.Th in T2DM subjects increase the propensity to femoral neck fracture. Apart from the deteriorated cortical microarchitecture, decreased cortical and trabecular microhardness suggests altered bone composition of the superolateral femoral neck cortex and trabeculae in T2DM. Significantly deteriorated cortical microarchitecture of the superolateral femoral neck is not recognized by standard DXA measurement of the femoral neck. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Increased Cortical Porosity, Reduced Cortical Thickness, and Reduced Trabecular and Cortical Microhardness of the Superolateral Femoral Neck Confer the Increased Hip Fracture Risk in Individuals with Type 2 Diabetes
    (2022)
    Cirovic, Aleksandar (57191923523)
    ;
    Jadzic, Jelena (57217214308)
    ;
    Djukic, Danica (57604470200)
    ;
    Djonic, Danijela (6504271198)
    ;
    Zivkovic, Vladimir (36783131300)
    ;
    Nikolic, Slobodan (7102082739)
    ;
    Djuric, Marija (12243542300)
    ;
    Milovanovic, Petar (25927301300)
    Individuals with diabetes mellitus type 2 (T2DM) have approximately 30% increased risk of hip fracture; however, the main cause of the elevated fracture risk in those subjects remains unclear. Moreover, micromechanical and microarchitectural properties of the superolateral femoral neck—the common fracture-initiating site—are still unknown. We collected proximal femora of 16 men (eight with T2DM and eight controls; age: 61 ± 10 years) at autopsy. After performing post-mortem bone densitometry (DXA), the superolateral neck was excised and scanned with microcomputed tomography (microCT). We also conducted Vickers microindentation testing. T2DM and control subjects did not differ in age (p = 0.605), body mass index (p = 0.114), and femoral neck bone mineral density (BMD) (p = 0.841). Cortical porosity (Ct.Po) was higher and cortical thickness (Ct.Th) was lower in T2DM (p = 0.044, p = 0.007, respectively). Of trabecular microarchitectural parameters, only structure model index (p = 0.022) was significantly different between T2DM subjects and controls. Control group showed higher cortical (p = 0.002) and trabecular bone microhardness (p = 0.005). Increased Ct.Po and decreased Ct.Th in T2DM subjects increase the propensity to femoral neck fracture. Apart from the deteriorated cortical microarchitecture, decreased cortical and trabecular microhardness suggests altered bone composition of the superolateral femoral neck cortex and trabeculae in T2DM. Significantly deteriorated cortical microarchitecture of the superolateral femoral neck is not recognized by standard DXA measurement of the femoral neck. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Micro-scale assessment of bone quality changes in adult cadaveric men with congestive hepatopathy
    (2022)
    Jadzic, Jelena (57217214308)
    ;
    Tomanovic, Nada (22941937200)
    ;
    Djukic, Danica (57604470200)
    ;
    Zivkovic, Vladimir (36783131300)
    ;
    Nikolic, Slobodan (7102082739)
    ;
    Djuric, Marija (12243542300)
    ;
    Milovanovic, Petar (25927301300)
    ;
    Djonic, Danijela (6504271198)
    Congestive hepatopathy (CH) is a chronic liver disease (CLD) caused by impaired hepatic venous blood outflow, most frequently resulting from congestive heart failure. Although it is known that heart failure and CLDs contribute to increased risk for age-related fractures, an assessment of CH-induced skeletal alterations has not been made to date. The aim of our study was to characterize changes in bone quality in adult male cadavers with pathohistologically confirmed CH compared with controls without liver disease. The anterior mid-transverse part of the fifth lumbar vertebral body was collected from 33 adult male cadavers (age range 43–89 years), divided into the CH group (n = 15) and the control group (n = 18). We evaluated trabecular and cortical micro-architecture and bone mineral content (using micro-computed tomography), bone mechanical competence (using Vickers micro-hardness tester), vertebral cellular indices (osteocyte lacunar network and bone marrow adiposity), and osteocytic sclerostin and connexin 43 expression levels (using immunohistochemistry staining and analysis). Deterioration in trabecular micro-architecture, reduced trabecular and cortical mineral content, and decreased Vickers microhardness were noted in the CH group (p < 0.05). Reduced total number of osteocytes and declined connexin 43 expression levels (p < 0.05) implied that harmed mechanotransduction throughout the osteocyte network might be present in CH. Moreover, elevated expression levels of sclerostin by osteocytes could indicate the role of sclerostin in mediating low bone formation in individuals with CH. Taken together, these micro-scale bone alterations suggest that vertebral strength could be compromised in men with CH, implying that vertebral fracture risk assessment and subsequent therapy may need to be considered in these patients. However, further research is required to confirm the clinical relevance of our findings. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Micro-scale assessment of bone quality changes in adult cadaveric men with congestive hepatopathy
    (2022)
    Jadzic, Jelena (57217214308)
    ;
    Tomanovic, Nada (22941937200)
    ;
    Djukic, Danica (57604470200)
    ;
    Zivkovic, Vladimir (36783131300)
    ;
    Nikolic, Slobodan (7102082739)
    ;
    Djuric, Marija (12243542300)
    ;
    Milovanovic, Petar (25927301300)
    ;
    Djonic, Danijela (6504271198)
    Congestive hepatopathy (CH) is a chronic liver disease (CLD) caused by impaired hepatic venous blood outflow, most frequently resulting from congestive heart failure. Although it is known that heart failure and CLDs contribute to increased risk for age-related fractures, an assessment of CH-induced skeletal alterations has not been made to date. The aim of our study was to characterize changes in bone quality in adult male cadavers with pathohistologically confirmed CH compared with controls without liver disease. The anterior mid-transverse part of the fifth lumbar vertebral body was collected from 33 adult male cadavers (age range 43–89 years), divided into the CH group (n = 15) and the control group (n = 18). We evaluated trabecular and cortical micro-architecture and bone mineral content (using micro-computed tomography), bone mechanical competence (using Vickers micro-hardness tester), vertebral cellular indices (osteocyte lacunar network and bone marrow adiposity), and osteocytic sclerostin and connexin 43 expression levels (using immunohistochemistry staining and analysis). Deterioration in trabecular micro-architecture, reduced trabecular and cortical mineral content, and decreased Vickers microhardness were noted in the CH group (p < 0.05). Reduced total number of osteocytes and declined connexin 43 expression levels (p < 0.05) implied that harmed mechanotransduction throughout the osteocyte network might be present in CH. Moreover, elevated expression levels of sclerostin by osteocytes could indicate the role of sclerostin in mediating low bone formation in individuals with CH. Taken together, these micro-scale bone alterations suggest that vertebral strength could be compromised in men with CH, implying that vertebral fracture risk assessment and subsequent therapy may need to be considered in these patients. However, further research is required to confirm the clinical relevance of our findings. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback