Browsing by Author "Diklić, Miloš (35748587200)"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication Inflammation mediated angiogenesis in chronic lymphocytic leukemia(2024) ;Mitrović-Ajtić, Olivera (56586150800) ;Živković, Emilija (57224736906) ;Subotički, Tijana (55933499100) ;Diklić, Miloš (35748587200) ;Đikić, Dragoslava (42061363200) ;Vukotić, Milica (59266277000) ;Dragojević, Teodora (57224742546) ;Vuković, Vojin (56180315400) ;Antić, Darko (23979576100)Čokić, Vladan P. (6507196877)Chronic inflammation has been identified in leukemias as an essential regulator of angiogenesis. B-chronic lymphocytic leukemia (CLL) cells secrete high levels of vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1 alpha (HIF1α). The aim was to assess the role of inflammation in activation of angiogenic factors: endothelial nitric oxide synthase (eNOS), HIF1α and VEGF via proliferation related signaling pathways and VEGF autocrine control. We isolated mononuclear cells (MNC) and CD19+ cells from peripheral blood of 60 patients with CLL. MNC were treated with pro-inflammatory interleukin-6 (IL-6) and VEGF, in combination with inhibitors of JAK1/2 (Ruxolitinib), mTOR (Rapamycin), NF-κB (JSH23), SMAD (LDN-193189) and PI3K/AKT (Ly294002) signaling pathways, to evaluate eNOS, VEGF and HIF1α expression by immunoblotting, immunocytochemistry and RT-qPCR. Also, we investigated IL-6 dependent neovascularization in human microvascular endothelial cells (HMEC-1) in co-culture with MNC of CLL. The angiogenic factors eNOS, VEGF and HIF1α had significantly higher frequencies in MNC of CLL in comparison to healthy controls (p < 0.001) and CD19+ cells of CLL. IL-6 increased the quantity of HIF1α (p < 0.05) and VEGF positive cells in the presence of JSH23 (p < 0.01). VEGF increased HIF1α (p < 0.05), and decreased eNOS gene expression (p < 0.01) in MNC of CLL. VEGF significantly (p < 0.001) increased the number of HIF1α positive MNC of CLL, prevented by inhibitors of JAK1/2, PI3K and mTOR signaling pathways. VEGF stimulation of SMAD (p < 0.05) and STAT5 (p < 0.01) signaling has been prevented by inhibitors of JAK1/2, mTOR, PI3K and SMAD signaling, individually (p < 0.01) or mutually (p < 0.001). Also, we showed that MNC of CLL and IL-6 individually stimulate neovascularization in co-culture with HMEC-1, without a cumulative effect. We demonstrated elevated angiogenic factors in CLL, while VEGF and IL-6 independently stimulated HIF1α. VEGF stimulation of HIF1α was mostly mTOR dependent, while IL-6 stimulation was NF-κB dependent. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. - Some of the metrics are blocked by yourconsent settings
Publication TLR4 and RAGE conversely mediate pro-inflammatory S100A8/9-mediated inhibition of proliferation-linked signaling in myeloproliferative neoplasms(2018) ;Kovačić, Marijana (57194656687) ;Mitrović-Ajtić, Olivera (56586150800) ;Beleslin-Čokić, Bojana (6506788366) ;Djikić, Dragoslava (42061363200) ;Subotički, Tijana (55933499100) ;Diklić, Miloš (35748587200) ;Leković, Danijela (36659562000) ;Gotić, Mirjana (7004685432) ;Mossuz, Pascal (6601956425)Čokić, Vladan P. (6507196877)Purpose: Previously, the family of S100A proteins has been found to be associated with inflammation and myelopoiesis and to be able to induce or support myeloproliferation during chronic inflammation. Here, we studied the inflammatory myeloid-related proteins S100A4, S100A8, S100A9 and S100A12 in myeloproliferative neoplasms (MPNs) in order to assess the involvement of chronic inflammation in the pathogenesis of MPN. Methods: We analyzed the S100A4, S100A8, S100A9 and S100A12 mRNA and protein levels in the bone marrow and circulation of 140 patients with MPN and 15 healthy controls using Western blotting, microarray-based mRNA expression profiling and ELISA assays, respectively. In addition we performed functional studies on the proliferation-related AKT and ERK1/2 signaling pathways in MPN-derived granulocytes using Western blotting and proteomic analyses. Results: We found that the S100A mRNA levels were increased in MPN patient-derived circulatory CD34+ cells, and that their protein expression levels were also augmented in their granulocytes and bone marrow stroma cells, depending on the JAK2V617F mutation allele burden. We also found that calreticulin (CALR) mutations were related to reduced S100A8 plasma levels in primary myelofibrosis (PMF). The S100A8 plasma levels were found to be increased in MPN, the S100A9 plasma levels in PMF and essential thrombocythemia (ET), and the S100A12 plasma levels in polycythemia vera (PV). These S100A plasma levels showed a positive correlation with the systemic inflammation marker IL-8, as well as with the numbers of leukocytes and thrombocytes, depending on the JAK2V617F mutation status. Additionally, we found that heterodimeric S100A8/9 can inhibit the AKT pathway in MPN-derived granulocytes mediated by the Toll-like receptor 4 (TLR4), depending on the CALR mutation status. Conversely, we found that blocking of the receptor for advanced glycation end products (RAGE) increased the S100A8/9-mediated inhibition of AKT signaling in the MPN-derived granulocytes. Moreover, we found that heterodimeric S100A8/9 generally induced TLR4-mediated ERK1/2 dephosphorylation proportionally to the JAK2V617F mutation allele burden. TLR4/RAGE blocking prevented the S100A8/9-mediated inhibition of ERK1/2 phosphorylation in PV. Conclusions: From our data we conclude that the S100A8 and S100A9 granulocyte and plasma levels are increased in MPN patients, along with inflammation markers, depending on their JAK2V617F mutation allele burden. We also found that S100A8/9-mediated inhibition of the proliferation-related AKT and ERK1/2 signaling pathways can be decreased by CALR mutation-dependent TLR4 blocking and increased by RAGE inhibition in MPN. © 2018, International Society for Cellular Oncology. - Some of the metrics are blocked by yourconsent settings
Publication TLR4 and RAGE conversely mediate pro-inflammatory S100A8/9-mediated inhibition of proliferation-linked signaling in myeloproliferative neoplasms(2018) ;Kovačić, Marijana (57194656687) ;Mitrović-Ajtić, Olivera (56586150800) ;Beleslin-Čokić, Bojana (6506788366) ;Djikić, Dragoslava (42061363200) ;Subotički, Tijana (55933499100) ;Diklić, Miloš (35748587200) ;Leković, Danijela (36659562000) ;Gotić, Mirjana (7004685432) ;Mossuz, Pascal (6601956425)Čokić, Vladan P. (6507196877)Purpose: Previously, the family of S100A proteins has been found to be associated with inflammation and myelopoiesis and to be able to induce or support myeloproliferation during chronic inflammation. Here, we studied the inflammatory myeloid-related proteins S100A4, S100A8, S100A9 and S100A12 in myeloproliferative neoplasms (MPNs) in order to assess the involvement of chronic inflammation in the pathogenesis of MPN. Methods: We analyzed the S100A4, S100A8, S100A9 and S100A12 mRNA and protein levels in the bone marrow and circulation of 140 patients with MPN and 15 healthy controls using Western blotting, microarray-based mRNA expression profiling and ELISA assays, respectively. In addition we performed functional studies on the proliferation-related AKT and ERK1/2 signaling pathways in MPN-derived granulocytes using Western blotting and proteomic analyses. Results: We found that the S100A mRNA levels were increased in MPN patient-derived circulatory CD34+ cells, and that their protein expression levels were also augmented in their granulocytes and bone marrow stroma cells, depending on the JAK2V617F mutation allele burden. We also found that calreticulin (CALR) mutations were related to reduced S100A8 plasma levels in primary myelofibrosis (PMF). The S100A8 plasma levels were found to be increased in MPN, the S100A9 plasma levels in PMF and essential thrombocythemia (ET), and the S100A12 plasma levels in polycythemia vera (PV). These S100A plasma levels showed a positive correlation with the systemic inflammation marker IL-8, as well as with the numbers of leukocytes and thrombocytes, depending on the JAK2V617F mutation status. Additionally, we found that heterodimeric S100A8/9 can inhibit the AKT pathway in MPN-derived granulocytes mediated by the Toll-like receptor 4 (TLR4), depending on the CALR mutation status. Conversely, we found that blocking of the receptor for advanced glycation end products (RAGE) increased the S100A8/9-mediated inhibition of AKT signaling in the MPN-derived granulocytes. Moreover, we found that heterodimeric S100A8/9 generally induced TLR4-mediated ERK1/2 dephosphorylation proportionally to the JAK2V617F mutation allele burden. TLR4/RAGE blocking prevented the S100A8/9-mediated inhibition of ERK1/2 phosphorylation in PV. Conclusions: From our data we conclude that the S100A8 and S100A9 granulocyte and plasma levels are increased in MPN patients, along with inflammation markers, depending on their JAK2V617F mutation allele burden. We also found that S100A8/9-mediated inhibition of the proliferation-related AKT and ERK1/2 signaling pathways can be decreased by CALR mutation-dependent TLR4 blocking and increased by RAGE inhibition in MPN. © 2018, International Society for Cellular Oncology. - Some of the metrics are blocked by yourconsent settings
Publication β-catenin and PPAR-γ levels in bone marrow of myeloproliferative neoplasm: an immunohistochemical and ultrastructural study(2018) ;Subotički, Tijana (55933499100) ;Mitrović Ajtić, Olivera (56586150800) ;Mićić, Mileva (7005218300) ;Kravić Stevović, Tamara (35275295500) ;Đikić, Dragoslava (42061363200) ;Diklić, Miloš (35748587200) ;Leković, Danijela (36659562000) ;Gotić, Mirjana (7004685432)Čokić, Vladan P. (6507196877)In accordance with increased proliferation in myeloproliferative neoplasm (MPN), the goal is to evaluate the immunoexpression of: β-catenin, PPAR-γ and Ki67 protein, to compare them with bone marrow ultrastructural characteristics in patients with MPN. Immunoexpression and electron microscopy of bone marrow was analyzed in 30 Ph-negative MPN patients, including per 10 patients with polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The quantity of β-catenin immunoreactive cells was significantly higher in PV then in ET (p < 0.01) or PMF group of patients (p < 0.01) and also in ET versus PMF group of patients (p < 0.01). Erythroid lineage showed absent β-catenin staining without immunoreactivity in nucleus. In contrast, immunoreactivity for PPAR-γ was localized mostly in megakaryocytes and the highest number of PPAR-γ immunopositive cells was detected in PMF group of patients. In addition, the proliferative Ki67 index was significantly increased in the PMF and PV patients compared to patients with ET. Also, the megakaryocytes showed abnormal maturation in PMF group of patients as determined by ultrastructural analysis. These results indicated that PV dominantly expressed β-catenin and proliferation marker Ki67 in bone marrow, while PMF is linked preferentially to PPAR-γ immunopositive megakaryocytes characterized by abnormal maturation. © 2018, © 2018 Taylor & Francis Group, LLC. - Some of the metrics are blocked by yourconsent settings
Publication β-catenin and PPAR-γ levels in bone marrow of myeloproliferative neoplasm: an immunohistochemical and ultrastructural study(2018) ;Subotički, Tijana (55933499100) ;Mitrović Ajtić, Olivera (56586150800) ;Mićić, Mileva (7005218300) ;Kravić Stevović, Tamara (35275295500) ;Đikić, Dragoslava (42061363200) ;Diklić, Miloš (35748587200) ;Leković, Danijela (36659562000) ;Gotić, Mirjana (7004685432)Čokić, Vladan P. (6507196877)In accordance with increased proliferation in myeloproliferative neoplasm (MPN), the goal is to evaluate the immunoexpression of: β-catenin, PPAR-γ and Ki67 protein, to compare them with bone marrow ultrastructural characteristics in patients with MPN. Immunoexpression and electron microscopy of bone marrow was analyzed in 30 Ph-negative MPN patients, including per 10 patients with polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The quantity of β-catenin immunoreactive cells was significantly higher in PV then in ET (p < 0.01) or PMF group of patients (p < 0.01) and also in ET versus PMF group of patients (p < 0.01). Erythroid lineage showed absent β-catenin staining without immunoreactivity in nucleus. In contrast, immunoreactivity for PPAR-γ was localized mostly in megakaryocytes and the highest number of PPAR-γ immunopositive cells was detected in PMF group of patients. In addition, the proliferative Ki67 index was significantly increased in the PMF and PV patients compared to patients with ET. Also, the megakaryocytes showed abnormal maturation in PMF group of patients as determined by ultrastructural analysis. These results indicated that PV dominantly expressed β-catenin and proliferation marker Ki67 in bone marrow, while PMF is linked preferentially to PPAR-γ immunopositive megakaryocytes characterized by abnormal maturation. © 2018, © 2018 Taylor & Francis Group, LLC.
